GM Watch
  • Main Menu
    • Home
    • News
      • Newsletter subscription
      • News Reviews
      • News Languages
        • Notícias em Português
        • Nieuws in het Nederlands
        • Nachrichten in Deutsch
      • Archive
    • Resources
      • GM Myth Makers
      • Gene Editing
      • Non-GM successes
      • GM Quotes
      • GM Myths
      • GM Firms
        • Monsanto: a history
        • Monsanto: resources
        • Bayer: a history
        • Bayer: resources
      • GM Booklet
      • GM Book
      • Audio
        • Recordings of scientist Arpad Pusztai interviewed by journalist Andy Rowell
    • Contact
    • About
    • Search
    • Donations
News and comment on genetically modified foods and their associated pesticides    
  • News
    • Newsletter subscription
    • News Reviews
    • News Languages
      • Notícias em Português
      • Nieuws in het Nederlands
      • Nachrichten in Deutsch
    • Archive
  • Resources
    • Non-GM Successes
    • GM Myth Makers
    • Gene Editing
    • GM Quotes
    • GM Myths
    • GM Firms
      • Monsanto: a history
      • Monsanto: resources
      • Bayer: a history
      • Bayer: resources
    • GM Booklet
    • GM Book
    • Audio
      • Recordings of scientist Arpad Pusztai interviewed by journalist Andy Rowell
  • Donations
  • Contact
  • About
  • Search

INTRODUCTION TO GM

GMO Myths and Facts front page.jpg

GENE EDITING MYTHS, RISKS, & RESOURCES

Gene Editing Myths and Reality

CITIZENS’ GUIDE TO GM

GMO Myths and Truths front cover

PLEASE SUPPORT GMWATCH

Donations

If you like what we do, please help us do more. You can donate via Paypal or credit/debit card. Some of you have opted to give a regular donation. We greatly appreciate that as it helps place us on a more stable financial basis. Thank you for your support!

GM industry 'solution' to glyphosate resistant weeds - 2, 4-D-resistant crops

Details
Published: 15 February 2011
Twitter
NOTE: Chemical/GM company Dow has come up with a 'solution' to the problem of glyphosate-resistant weeds, which are fast making GM Roundup Ready technology redundant. The company has identified a gene that, when engineered into maize plants, makes them tolerate being doused with 2,4-D and related herbicides, as detailed in a study by Dow employees (abstract below). This is touted as an important advance that "can help preserve the productivity and environmental benefits of herbicide-resistant crops". The authors claim in their study that 2,4-D is safe - citing two non-peer reviewed sources.
---
---
Wright, T. R., G. Shan, et al. (2010). "Robust crop resistance to broadleaf and grass herbicides provided by aryloxyalkanoate dioxygenase transgenes." Proc Natl Acad Sci U S A 107(47): 20240-20245.

Free in full:  http://www.pnas.org/content/107/47/20240.full.pdf+html

Engineered glyphosate resistance is the most widely adopted genetically modified trait in agriculture, gaining widespread acceptance by providing a simple robust weed control system. However, extensive and sustained use of glyphosate as a sole weed control mechanism has led to field selection for glyphosate-resistant weeds and has induced significant population shifts to weeds with inherent tolerance to glyphosate. Additional weed control mechanisms that can complement glyphosate-resistant crops are, therefore, urgently needed. 2,4-dichlorophenoxyacetic acid (2,4-D) is an effective low-cost, broad-spectrum herbicide that controls many of the weeds developing resistance to glyphosate. We investigated the substrate preferences of bacterial aryloxyalkanoate dioxygenase enzymes (AADs) that can effectively degrade 2,4-D and have found that some members of this class can act on other widely used herbicides in addition to their activity on 2,4-D. AAD-1 cleaves the aryloxyphenoxypropionate family of grass-active herbicides, and AAD-12 acts on pyridyloxyacetate auxin herbicides such as triclopyr and fluroxypyr. Maize plants transformed with an AAD-1 gene showed robust crop resistance to aryloxyphenoxypropionate herbicides over four generations and were also not injured by 2,4-D applications at any growth stage. Arabidopsis plants expressing AAD-12 were resistant to 2,4-D as well as triclopyr and fluroxypyr, and transgenic soybean plants expressing AAD-12 maintained field resistance to 2,4-D over five generations. These results show that single AAD transgenes can provide simultaneous resistance to a broad repertoire of agronomically important classes of herbicides, including 2,4-D, with utility in both monocot and dicot crops. These transgenes can help preserve the productivity and environmental benefits of herbicide-resistant crops.

Menu

Home

Subscriptions

News Archive

News Reviews

GM Book

Resources

Non-GM Successes

GM Myth Makers

GM Myths

GM Quotes

GM Booklet

Contacts

Contact Us

About

Facebook

Twitter

Donations

Content 1999 - 2025 GMWatch.
Web Development By SCS Web Design