Print

1. Multi-toxin biotech crops not silver bullets, UA scientists warn
2. Potential shortfall of pyramided transgenic cotton for insect resistance management - study abstract

NOTE: Pest resistance to Bt toxin in single-trait Bt crops has led the GM industry to stack multiple types of Bt toxin in one crop, in an attempt to kill off the pests that have evolved resistance to one toxin. But new experiments suggest that the assumptions underlying this model are false and doomed to fail.

As more and more research dollars are burned up in an attempt to shore up an intrinsically unsustainable approach to pest management, we can't help but wish that our money were used to explore genuinely sustainable solutions.
---
---
1. Multi-toxin biotech crops not silver bullets, UA scientists warn
By Daniel Stolte
University of Arizona News
March 28, 2013
 http://www.uanews.org/story/multi-toxin-biotech-crops-not-silver-bullets-ua-scientists-warn

A strategy widely used to prevent pests from quickly adapting to crop-protecting toxins may fail in some cases unless better preventive actions are taken, suggests new research by University of Arizona entomologists published in the Proceedings of the National Academy of Sciences.

Corn and cotton have been genetically modified to produce pest-killing proteins from the bacterium Bacillus thuringiensis, or Bt for short. Compared with typical insecticide sprays, the Bt toxins produced by genetically engineered crops are much safer for people and the environment, explained Yves Carriere, a professor of entomology in the UA College of Agriculture and Life Sciences who led the study.

Although Bt crops have helped to reduce insecticide sprays, boost crop yields and increase farmer profits, their benefits will be short-lived if pests adapt rapidly, said Bruce Tabashnik, a co-author of the study and head of the UA department of entomology. "Our goal is to understand how insects evolve resistance so we can develop and implement more sustainable, environmentally friendly pest management," he said. Tabashnik and Carriere are both members of the UA's BIO5 Institute. 

Bt crops were first grown widely in 1996, and several pests have already become resistant to plants that produce a single Bt toxin. To thwart further evolution of pest resistance to Bt crops, farmers have recently shifted to the "pyramid" strategy: each plant produces two or more toxins that kill the same pest. As reported in the study, the pyramid strategy has been adopted extensively, with two-toxin Bt cotton completely replacing one-toxin Bt cotton since 2011 in the U.S.

Most scientists agree that two-toxin plants will be more durable than one-toxin plants. The extent of the advantage of the pyramid strategy, however, rests on assumptions that are not always met, the study reports. Using lab experiments, computer simulations and analysis of published experimental data, the new results help explain why one major pest has started to become resistant faster than anticipated.

"The pyramid strategy has been touted mostly on the basis of simulation models," said Carrière. "We tested the underlying assumptions of the models in lab experiments with a major pest of corn and cotton. The results provide empirical data that can help to improve the models and make the crops more durable."

One critical assumption of the pyramid strategy is that the crops provide redundant killing, Carrière explained. "Redundant killing can be achieved by plants producing two toxins that act in different ways to kill the same pest," he said, "so, if an individual pest has resistance to one toxin, the other toxin will kill it."

In the real world, things are a bit more complicated, Carriere's team found out. Thierry Brevault, a visiting scientist from France, led the lab experiments at the UA. His home institution, the Center for Agricultural Research for Development, or CIRAD, is keenly interested in factors that could affect pest resistance to Bt crops in Africa.

"We obviously can't release resistant insects into the field, so we breed them in the lab and bring in the crop plants to do feeding experiments," Carriere said. For their experiments, the group collected cotton bollworm – also known as corn earworm or Helicoverpa zea – a species of moth that is a major agricultural pest, and selected it for resistance against one of the Bt toxins, Cry1Ac.

As expected, the resistant caterpillars survived after munching on cotton plants producing only that toxin. The surprise came when Carriere's team put them on pyramided Bt cotton containing Cry2Ab in addition to Cry1Ac.

If the assumption of redundant killing is correct, caterpillars resistant to the first toxin should survive on one-toxin plants, but not on two-toxin plants, because the second toxin should kill them, Carriere explained.

"But on the two-toxin plants, the caterpillars selected for resistance to one toxin survived significantly better than caterpillars from a susceptible strain."

These findings show that the crucial assumption of redundant killing does not apply in this case and may also explain the reports indicating some field populations of cotton bollworm rapidly evolved resistance to both toxins.

Moreover, the team's analysis of published data from eight species of pests reveals that some degree of cross-resistance between Cry1 and Cry2 toxins occurred in 19 of 21 experiments. Contradicting the concept of redundant killing, cross-resistance means that selection with one toxin increases resistance to the other toxin.

According to the study's authors, even low levels of cross-resistance can reduce redundant killing and undermine the pyramid strategy. Carriere explained that this is especially problematic with cotton bollworm and some other pests that are not highly susceptible to Bt toxins to begin with.

The team found violations of other assumptions required for optimal success of the pyramid strategy. In particular, inheritance of resistance to plants producing only Bt toxin Cry1Ac was dominant, which is expected to reduce the ability of refuges to delay resistance.

Refuges consist of standard plants that do not make Bt toxins and thus allow survival of susceptible pests. Under ideal conditions, inheritance of resistance is not dominant and the susceptible pests emerging from refuges greatly outnumber the resistant pests. If so, the matings between two resistant pests needed to produce resistant offspring are unlikely. But if inheritance of resistance is dominant, as seen with cotton bollworm, matings between a resistant moth and a susceptible moth can produce resistant offspring, which hastens resistance.

According to Tabashnik, overly optimistic assumptions have led the EPA to greatly reduce requirements for planting refuges to slow evolution of pest resistance to two-toxin Bt crops.

The new results should come as a wakeup call to consider larger refuges to push resistance further into the future, Carriere pointed out. "Our simulations tell us that with 10 percent of acreage set aside for refuges, resistance evolves quite fast, but if you put 30 or 40 percent aside, you can substantially delay it."

"Our main message is to be more cautious, especially with a pest like the cotton bollworm," Carrière said. "We need more empirical data to refine our simulation models, optimize our strategies and really know how much refuge area is required. Meanwhile, let's not assume that the pyramid strategy is a silver bullet."
---
---
2. Study abstract
Potential shortfall of pyramided transgenic cotton for insect resistance management
Thierry Brevaulta, Shannon Heuberger, Min Zhang, Christa Ellers-Kirk, Xinzhi Ni, Luke Masson, Xianchiun Li, Bruce E. Tabashnik, and Yves Carriere
PNAS, March 25, 2013
 http://www.pnas.org/content/early/2013/03/22/1216719110.abstract

Abstract

To delay evolution of pest resistance to transgenic crops producing insecticidal proteins from Bacillus thuringiensis (Bt), the "pyramid" strategy uses plants that produce two or more toxins that kill the same pest. In the United States, this strategy has been adopted widely, with two-toxin Bt cotton replacing one-toxin Bt cotton. Although two-toxin plants are likely to be more durable than one-toxin plants, the extent of this advantage depends on several conditions. One key assumption favoring success of two-toxin plants is that they kill insects selected for resistance to one toxin, which is called "redundant killing". Here we tested this assumption for a major pest, Helicoverpa zea, on transgenic cotton producing Bt toxins Cry1Ac and Cry2Ab. Selection with Cry1Ac increased survival on two-toxin cotton, which contradicts the assumption. The concentration of Cry1Ac and Cry2Ab declined during the growing season, which would tend to exacerbate this problem.                    

Furthermore, analysis of results from 21 selection experiments with eight species of lepidopteran pests indicates that some cross-resistance typically occurs between Cry1A and Cry2A toxins. Incorporation of empirical data into simulation models shows that the observed deviations from ideal conditions could greatly reduce the benefits of the pyramid strategy for pests like H. zea, which have inherently low susceptibility to Bt toxins and have been exposed extensively to one of the toxins in the pyramid before two-toxin plants are adopted. For such pests, the pyramid strategy could be improved by incorporating empirical data on deviations from ideal assumptions about redundant killing and cross-resistance.